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Ways Modality Could Be  

~ On the Possibility and Prospects of Higher-Order Modal Logic ~ 

 

Jason Zarri 

 

The modal logics of physical and metaphysical necessity are certainly at least as strong 

as Kρ: If A’s truth is determined by the laws of physics/metaphysics, then A is true. But it 

is not clear that they are any stronger. For example, it is determined by the laws of 

physics that I do not accelerate through the speed of light. But why should this fact itself 

be determined by the laws of physics…? Similarly, I am not a frog, and so it is 

metaphysically possible that I am not a frog. But is that fact true because of the essence 

of something…? The essence of possibility? 

 

— Graham Priest, An Introduction to Non-Classical Logic: From If to Is, 2
nd

 edition, p. 47. 

 

1. Introduction 

 In this paper I introduce the idea of a higher-order modal logic—not a modal logic for 

higher-order predicate logic, but rather a logic of higher-order modalities. “What is a higher-

order modality?”, you might be wondering. Well, if a first-order modality is a way that some 

entity could have been—whether it is a mereological atom, or a mereological complex, or the 

universe as a whole—a higher-order modality is a way that a first-order modality could have 

been. First-order modality is modeled in terms of a space of possible worlds—a set of worlds 

structured by an accessibility relation, i.e., a relation of relative possibility—each world 

representing a way that the entire universe could have been. A second-order modality would be 

modeled in terms of a space of spaces of (first-order) possible worlds, each space representing a 

way that (first-order) possible worlds could have been. And just as there is a unique actual world 
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which represents the way that things actually are, there is a unique actual space which represents 

the way that first-order modality actually is. 

 One might wonder what the accessibility relation itself is like. Presumably, if it is logical 

or metaphysical modality that is being dealt with, it is reflexive; but is it also symmetric, or 

transitive? Especially in the case of metaphysical modality, the answer is not clear. And 

whichever of these properties it may or may not have, could that itself have been different? 

Could at least some rival modal logics represent different ways that first-order modality could 

have been? 

 To be clear, the idea behind my proposal is not just that some things which are possible 

or necessary might not have been so at the first order, as determined by the actual accessibility 

relation, but also that the actual accessibility relation, and hence the nature or structure of actual 

modality, could have been different at some higher order of modality. Even if the accessibility 

relation is actually both symmetric and transitive, perhaps it could (second-order) have been 

otherwise: There is a (second-order) possible space of worlds in which it is different, where it 

fails to be symmetric, or transitive. We must, therefore, introduce the notion of a higher-order 

accessibility relation, one that in this case relates spaces of first-order worlds. The question then 

arises as to whether that relation is symmetric, or transitive. We can then consider third-order 

modalities, spaces of spaces of spaces of possible worlds, where the second-order accessibility 

relation differs from how it actually is. I can see no reason why there should be a limit to this 

hierarchy of higher-order modalities, any more than I can see a reason why there should be a 

limit to the hierarchy of higher-order properties. There will thus be an infinity of orders, one for 

each positive integer, and each order will have an accessibility relation of its own. To keep things 

as clear as possible, a space of first-order points (i.e., of possible worlds) shall be called a galaxy, 



3 

a space of second-order points, a universe, and a space of any higher order, a cosmos. However, 

to keep things as simple as possible, in what follows I will deal with but a single cosmos at a 

time, and hence will not deal with modalities higher than the third order. 

 The accessibility relation is not the only thing that might be thought to vary between 

spaces of worlds: Perhaps the contents of the spaces can vary as well. While I presume that the 

contents of the worlds themselves remain constant—it makes doubtful sense to suppose that in 

one space some entity e exists in a world w and in another space e doesn’t exist in that same 

world w—we may suppose that different spaces may differ as to which worlds they contain, just 

as different worlds may differ as to which objects they contain. Thus we might have a higher-

order analogue of a variable-domain modal logic. There seem, then, to be three ways in which 

spaces can differ: First, as to the properties of the accessibility relation; second, as to which 

worlds the relation relates; and third, as to which worlds or spaces are parts of their domains. 

 The paper will be structured as follows. In Section 2 I provide some reasons why one 

might want to pursue this kind of project in the first place. In Section 3 I outline the syntax and 

semantics of my proposed logic. Section 4 covers semantic tableaux for this system; and after 

giving the rules for their construction, I construct a few of them myself to establish some logical 

consequences of the system and give the reader a feel for how it works. In Section 5 I outline a 

potential application of my framework to the metalogic of modal logics. In Sections 6, 7 and 8 I 

explore some of  its potential philosophical implications for areas besides logic, namely the 

philosophy of language; metaphysics, including the metaphysics of modality, the philosophy of 

time, and laws of nature; and finally the philosophy of religion, before concluding the paper in 

Section 9. 
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2. Motivation 

 Why should we adopt a framework such as the one I have just described? To motivate it, 

consider the fact that people have mutually conflicting intuitions about what the space of all 

(first-order) possible worlds is like. For example, does God exist in all, none, or only some 

worlds? Each of these positions, if true, is necessarily true, and if false, is necessarily false. God 

either exists in all, none, or only some worlds, and on the standard view the actual space of 

worlds could not have been different, because it is the only space of possible worlds that there is.  

 On the face of it, this is problematic for the view that conceivability implies possibility: 

Each of these positions has been believed, and by very able philosophers at that. What is 

believed is conceivable in some sense; otherwise, such “beliefs” would have no content. So each 

position is conceivable, but only one is possible. No matter which of them holds, conceivability 

doesn’t imply possibility. 

 But maybe that’s not quite true. Perhaps, though only one of these positions is actually 

true, and hence first-order possible, each is second-order possible. So maybe conceivability does 

imply possibility—at some order or other. Related considerations might apply to semantic 

content and possibility: If we can coherently mean something, it can be the case—at some order 

or other. If one is already committed to the idea that conceivability implies possibility, one has a 

reason to be interested in my project.  

 Or consider Kripke’s doctrine of the essentiality of origins. According to him, for 

example, your parents are essential to your existence; any metaphysically possible world where 

you exist is a world in which you have the same parents that you do in this word, the actual 

world (Naming and Necessity, pp. 112-3). Even if we assume that this is so as a matter of first-
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order metaphysical necessity, it seems to be higher-order contingent: Surely your having the 

parents you do is not a matter of logic, but in that case it is logically possible for it to be 

otherwise. Furthermore, it doesn’t seem to be a matter of logic that it is (first-order) 

metaphysically necessary that you have the parents you do, and hence it seems logically possible 

that it is not (first-order) metaphysically necessary that you have them as your parents. Perhaps, 

then, even if every metaphysically possible world in the actual space of worlds is one in which 

you have the parents that you actually do, the actual galaxy accesses a possible galaxy which 

contains metaphysically possible worlds where you have different parents. My framework, then, 

can explain how claims that hold at every first-order metaphysically possible world could 

nevertheless be higher-order contingent.  

 Finally, and perhaps most importantly, consider the fact that there are many modal logics, 

which are mutually inconsistent, in the sense that two or more such logics cannot correctly 

describe the structure of the same space of worlds. These logics all seem to be perfectly good, 

and perfectly intelligible, as systems of modal logic. Even if I suppose that S5 (i.e. Kρστ), for 

instance, correctly represents the actual structure of metaphysical modality, I can wonder how 

things would have differed if the accessibility relation had lacked certain properties; and another 

system, say S4 (i.e. Kρτ), can tell me exactly what characteristically modal arguments would 

have been valid if that had been so—or so it seems to me. S4 certainly constitutes a 

representation of the structure—or better, a structure—of metaphysical modality, even if it is 

actually a necessarily false one. Qua representation, it seems to me to have much the same status 

as our more customary representations of how certain things about our world would have turned 

out if certain other things about our world had been different. In much the same way that we take 
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these representations to depict ways things could have been, why couldn’t we take S4 and other 

modal logics to depict ways modality could have been? 

 I should make it clear that I do not expect the kind of framework I propose to settle the 

issue of how modality at any order actually is—no more than I expect ordinary first-order modal 

logic to settle (aside from first-order necessary truths) what is actually the case. What goes for 

the actual world goes for the actual space of worlds, and for all higher-order spaces of spaces. 

What I do hope for is that it will, if it proves to be coherent, help to clarify the terms of the 

debate about the way modality is—to help us to state the issues, and to see their interrelations, as 

clearly as we can. 

 

3. Setting up the System: Syntax and Semantics 

 In this section I shall describe the syntax and semantics of my proposed system, which I 

shall call ‘HOML’, an acronym for ‘Higher-Order Modal Logic’.  

3.1. Syntax 

First, we have the syntax: 

1) I shall use □n and ◊n, respectively, for necessity and possibility operators of the 

order n, for positive integers 1, 2 and 3. 

2) I shall use □n
m

 and ◊n
m

, respectively, for an iteration of m necessity or possibility 

operators of the order n.  

3) For atomic sentences, we will use capital letters from the entire alphabet, with 

numerical subscripts appended to them if necessary.  
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4) As for connectives, we will use the symbols ¬ ,  ⋀ ,  ∨ ,  ⊃ , and  ≡ , 

respectively, for negation, conjunction, disjunction, material implication, and 

material equivalence.  

5) For brackets one can use parentheses, (, ) ; square brackets, [, ] ; or curly 

brackets, {, }. It makes no difference which brackets are used where. 

6) I will use 1 and 0 as truth values, 1 for true and 0 for false.  

7) Finally, the usual recursive clauses for constructing well-formed formulas—

wffs, pronounced “woofs,” for short—from atomic sentences will be adopted.  All 

atomic sentences of HOML are wffs, and where p and q are arbitrary sentences of 

HOML: 

 1. If p is a wff, so are ¬ p, □1 p, □2 p, □3 p, ◊1 p, ◊2 p, and ◊3 p. 

2. If p and q are wffs, so is (p ⋀ q). 

3. If p and q are wffs, so is (p ∨ q). 

4.  If p and q are wffs, so is (p ⊃ q). 

5.  If p and q are wffs, so is (p ≡ q). 

6. Nothing else is a wff of HOML. 

3.2. Semantics 

1) Any set of worlds that is structured by an accessibility relation, or a higher-order 

counterpart, is a space, and its members are points. As above, a space of first-order 

points (i.e., of possible worlds) shall be called a galaxy, a space of second-order 

points, a universe, and a space of any higher order, a cosmos. Points of these orders 

shall be represented by expressions of the forms w
x
, g

y
, and u

z
, as mnemonics, 

respectively, for ‘world x’, ‘galaxy y’, and ‘universe z’. 

2) Every space has within it an accessibility relation holding between its points, 

and as every non-base point is itself a space, it will have an accessibility relation 

holding between its points. Thus, when considering a given universe of galaxies, 

one must take into account the fact that there will be a different accessibility 
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relation for each galaxy, and that the properties of these relations may differ. So in 

this universe, there will be an accessibility relation of the second order which holds 

between its galaxies, and many accessibility relations of the first order holding 

between the possible worlds within the galaxies. If the universe we are considering 

is u
1
, I will call the accessibility relation that holds between its galaxies R

1
g: The 

superscripted ‘1’ means that the relation holds within universe u
1
, and the 

subscripted ‘g’ means that it holds between galaxies. If, within u
1
, we are 

considering the galaxy g
3
, I will similarly call the accessibility relation that holds 

between its worlds R
3

w. Here the ‘3’ indicates that we are dealing with the relation 

that holds within galaxy g
3
, and the ‘w’ indicates that it holds between possible 

worlds. 

3) Model structures: A cosmos is a 6-tuple <W, G, U, RW, RG, RU> where: 

 

 W is a non-empty set, its members are possible worlds, 

 G is a non-empty set of subsets of W, its members are galaxies, 

 U is a non-empty set of subsets of G, its members are universes, 

 RW = {R
y
w: g

y
 in G} is a set of access relations, one for 

each galaxy, and defined on that galaxy, holding between possible worlds. 

 RG = {R
z
g: u

z
 in U} is a set of access relations, one for 

each universe, and defined on that universe, holding between galaxies. 

 RU = {Ru} (no superscript necessary in this case) is the unit set of the 

access relation defined on the cosmos, holding between universes. 

 

 An evaluation point is a triple <w
x
g

y
u

z
>, with a world w

x
 in W, a galaxy g

y
 

in G, and a universe u
z
 in U and such that w

x
 is in g

y
 and g

y
 is in u

z
. 

 

4) Truth-values are assigned to sentences relative to these points, like so:  

For an atomic sentence, the truth-value depends only on w (it is the same for 

<w
x
 g

y
 u

z
> and <w

x
 g

i
 u

k
>). Writing the evaluation function, which assigns the 
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semantic values 1 and 0 to sentences, as v (p) @ <w
x
g

y
u

z
>, meaning the value 

of p at the triple <w
x
g

y
u

z
>, I define: 

1) v(¬ p) @ <w
x
g

y
u

z
> = 1 iff v (p) @ <w

x
g

y
u

z
> = 0 

2) v(p ⋀ q) @ <w
x
g

y
u

z
> = 1 iff v (p) @ <w

x
g

y
u

z
> = 1 and v (q) @ <w

x
g

y
u

z
> 

= 1 

3) v(p ∨ q) @ <w
x
g

y
u

z
> = 1 iff v (p) @ <w

x
g

y
u

z
> = 1 or v (q) @ <w

x
g

y
u

z
> 

= 1 

4) v(p ⊃ q) @ <w
x
g

y
u

z
> = v (¬(p ⋀ ¬q)) @ <w

x
g

y
u

z
> 

5) v(p ≡ q) @ <w
x
g

y
u

z
> =  v((p ⊃ q) ⋀ (q ⊃ p)) @ <w

x
g

y
u

z
> 

6) v(□1 (p)) @ <w
x
g

y
u

z
> = 1 iff, for all worlds w’ in g

y 
in u

z 
that w

x
 accesses, 

v(p) @ <w’g
y
u

z
> = 1. 

7) v(□2 p) @ <w
x
g

y
u

z
> = 1 iff, for all worlds w’ in all galaxies g’ in u

z 
 that 

g
y
 accesses, v(p) @ <w’g’u

z
> = 1. 

8) v(□3 p) @ <w
x
g

y
u

z
> = 1 iff, for all worlds w’ in all galaxies g’ in all 

universes u’ that u
z  

accesses, v(p) @ <w’g’u’> = 1. 

9) v(◊1 p) @ <w
x
g

y
u

z
> = 1 iff, for some world w’ in g

y 
in u

z
 that w

x
 accesses, 

v(p) @ <w’g
y
u

z
> = 1. 

10) v(◊2 p) @ <w
x
g

y
u

z
> = 1 iff, for some world w’ in some  galaxy g’ in u

z 
 

that g
y
 accesses, v(p) @ <w’g’u

z
> = 1. 

11) v(◊3 p) @ <w
x
g

y
u

z
> = 1 iff, for some world w’ in some galaxy g’ in 

some universe u’ that u
z  

accesses, v(p) @ <w’g’u’> = 1. 

 

5) Definition of satisfaction: 1 is the sole designated value in HOML. A sentence p is 

satisfied with respect to a point of evaluation <w
x
g

y
u

z
> iff it is assigned a designated 

value at <w
x
g

y
u

z
>. A set X of sentences is satisfied with respect to a point of evaluation 

iff every member of X is satisfied at that point. 

 

6) Logical consequence. We say that a sentence p is a logical consequence of a set X of 

sentences, which we write as X ╞ p, iff in every model, i.e., in every cosmos C where X is 

satisfied with respect to a point of evaluation, p is also satisfied at that point. If there is 
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some cosmos C where X is satisfied with respect to a point of evaluation and p is not, we 

say that C is a countermodel to X ╞ p. Furthermore, if X is the empty set and X ╞ p, we 

say that p is a logical truth or logically valid sentence, and may simply write ╞ p. 

 

7) Restricted logical consequence. We say that a sentence p is a restricted logical 

consequence of a set X of sentences iff in every cosmos C, such that C has certain 

desired properties that are not guaranteed by the semantics alone, and where X is 

satisfied with respect to a point of evaluation, p is also satisfied at that point. The desired 

properties are properties of the accessibility relations involved in the cosmos, namely 

being reflexive (abbreviated as ‘REF.’), symmetric (SYMM.), transitive (TRANS.), or 

serial (SER.). If p is a restricted logical consequence of X when we assume that the 

accessibility relations have one or more of these properties, we write X ╞ p (or ╞ p if p is 

a restricted theorem, i.e., a consequence of the empty set if certain assumptions about 

accessibility relations are made) followed the names of the relation(s) and the 

abbreviation(s) of the assumed property(ies) enclosed in square brackets, followed by a 

comma, and then followed by any other relation(s) and the abbreviation(s) of the assumed 

property(ies) enclosed in square brackets, and so on, until they have all been mentioned. 

For example, if p is a logical consequence of X when we assume that R
y
w is symmetric, 

we write X ╞ p [R
y
w  SYMM]. And if p is a logical consequence of X when we assume 

that R
z
g is both reflexive and transitive, we write X ╞ p [R

z
g REF. TRANS.]. As a final 

example, if p is a logical consequence of X when we assume that R
z
g is both reflexive, 

symmetric and transitive and that Ru is reflexive, we write X ╞ p [R
z
g REF. SYMM. 

TRANS.], [Ru REF.]. 

 

 

4. Semantic Tableaux 

 In this section I first describe the tableaux rules associated with HOML, and then 

construct some actual tableaux to establish some consequences of the system. 
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4.1. Tableaux Rules 

 I will use semantic tableaux to establish derivability. We say that a sentence p is 

derivable from a set X of sentences, which we write as X ├ p, iff every tableau containing every 

member of X at the root node, followed by the negation of p at the root node is closed. A tableau 

is closed iff every one of its branches is closed, and a branch is closed iff for some sentence q 

that branch contains both q and the negation of q. Furthermore, every node of a tableau will be 

followed by a comma and the name of the evaluation point at which it holds. Tableaux for the 

truth-functional connectives will have the following forms: 

            

 

              ¬ ¬ p, <w
x
g

y
u

z
>                               p ⋀ q, <w

x
g

y
u

z
>                  ¬ (p ⋀ q), <w

x
g

y
u

z
> 

                   |                                                        |                                          /         \ 

                   p, <w
x
g

y
u

z
>                                   p, <w

x
g

y
u

z
>      ¬ (p), <w

x
g

y
u

z
>    ¬ (q), <w

x
g

y
u

z
> 

                                                                         q, <w
x
g

y
u

z
>                                               

                                                                       

 

 

                                     p ∨ q, <w
x
g

y
u

z
>            ¬ (p ∨ q), <w

x
g

y
u

z
>                                                                                                         

                                    /        \                                             |                                                                                                                                 

        p, <w
x
g

y
u

z
>     q, <w

x
g

y
u

z
>                         ¬ (p), <w

x
g

y
u

z
> 

                                                                                        ¬ (q), <w
x
g

y
u

z
> 

 

 

 

                                    p ⊃ q, <w
x
g

y
u

z
>                         ¬ (p ⊃ q) , <w

x
g

y
u

z
>  

                                   /         \                                                  | 

                    ¬ (p), <w
x
g

y
u

z
>   q, <w

x
g

y
u

z
>                          p, <w

x
g

y
u

z
> 

                                                                                         ¬ (q), <w
x
g

y
u

z
> 

 

 

                                    p ≡ q, <w
x
g

y
u

z
>                            ¬ (p ≡ q) , <w

x
g

y
u

z
>  

                                   /        \                                                /       \ 

                    p, <w
x
g

y
u

z
>    ¬ (p), <w

x
g

y
u

z
>             p, <w

x
g

y
u

z
>   ¬ (p), <w

x
g

y
u

z
> 

                    q, <w
x
g

y
u

z
>    ¬ (q), <w

x
g

y
u

z
>           ¬ (q), <w

x
g

y
u

z
>     q, <w

x
g

y
u

z
> 
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Tableaux for modal operators will have the following forms: 

 

                      ◊1 p, <w
x
g

y
u

z
>                                                           □1 p, <w

x
g

y
u

z
> 

                            |                                                                                     | 

                     w
x  

R
y
w w

i
                                                                     w

x  
R

y
w w

i
 

                            |                                                                                     | 

                           p, <w
i
g

y
u

z
>                                                                   p, <w

i
g

y
u

z
> 

   

         (where w
i
 is new to the branch),                            (for all worlds that are members of g

y
) 

 

                      ◊2 p, <w
x
g

y
u

z
>                                                           □2 p, <w

x
g

y
u

z
> 

                            |                                                                                     | 

                      g
y  

R
z
g g

j
                                                                        g

y  
R

z
g g

j
 

                            |                                                                                     | 

                           p, <w
i
g

j
u

z
>                                                                   p, <w

i
g

j
u

z
> 

   

 (where g
j
 is new to the branch and w

i
 is a member of it),  (for all worlds of all galaxies which g

y
 

accesses that are members of u
z
) 

                      ◊3 p, <w
x
g

y
u

z
>                                                           □3 p, <w

x
g

y
u

z
> 

                            |                                                                                     | 

                      u
z  

Ru u
k
                                                                         u

z  
Ru u

k
 

                            |                                                                                     | 

                           p, <w
i
g

j
u

k
>                                                                   p, <w

i
g

j
u

k
> 

 

(where u
k
 is new to the branch, g

j 
is a member of u

k
, and w

i
 is a member of g

j
),  (for all worlds of 

all galaxies of all universes which u
z
 accesses) 

 

 In addition, where n can be either 1, 2 or 3, we have: 

                                      ¬ ◊n p, <w
x
g

y
u

z
>                          ¬ □n p <w

x
g

y
u

z
> 

                                               |                                                       | 

                                      □n ¬ p, <w
x
g

y
u

z
>                         ◊n ¬ p, <w

x
g

y
u

z
> 
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4.2. Some Semantic Tableaux 

 

 I will now construct a few schematic semantic tableaux in order to establish some 

consequences of the system. First, I will establish that □2 p ├  □1 p [R
1

g REF.] : 

□2 p, <w
1
g

1
u

1
>                                                            

 ¬ □1 p, <w
1
g

1
u

1
>                                                            

| 

◊1 ¬ p, <w
1
g

1
u

1
> 

| 

w
1  

R
1

w w
2
 

| 

             ¬ p, <w
2
g

1
u

1
> 

 | 

            g
1  

R
1

g g
1
 [REF.] 

| 

                  p, <w
2
g

1
u

1
> 

x 

 

Thus, if something is second-order necessary it is also first-order necessary. We can say that 

necessity is hereditary downwards.  

  

 Second, I will establish that ◊1 p ├ ◊2  p [R
1

g REF.] : 

 

◊1 p, <w
1
g

1
u

1
> 

¬ ◊2  p, <w
1
g

1
u

1
> 

| 

□2 ¬ p, <w
1
g

1
u

1
> 

| 

w
1  

R
1

w w
2
 

| 

                 p, <w
2
g

1
u

1
> 

| 

            g
1  

R
1

g g
1
 [REF.] 

| 

              ¬ p, <w
2
g

1
u

1
> 

x 

 

Thus if something is first-order possible it is also second order possible. So possibility is 

hereditary upwards. 
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 Third, I will establish that □2 p ├  □1□2 p : 

 

 

 

□2 p, <w
1
g

1
u

1
> 

¬ □1 □2 p, <w
1
g

1
u

1
> 

| 

◊1 ¬ □2 p, <w
1
g

1
u

1
> 

| 

w
1  

R
1

w w
2
 

| 

¬ □2 p, <w
2
g

1
u

1
> 

| 

◊2 ¬ p, <w
2
g

1
u

1
> 

| 

g
1  

R
1

g g
2 

| 

¬ p, <w
3
g

2
u

1
> 

| 

                                                                    p, <w
3
g

2
u

1
> (from the first premise and “g

1  
R

1
g g

2
”) 

x 

 

Thus, if something is second-order necessary, it is first order necessary that it is second order 

necessary.  

 I believe these three tableaux will suffice to give the reader an idea of how to construct 

tableaux for HOML, and an appreciation of some of its general features. 

 

5. An Application to Modal Metalogic: Kripke Cosmoi 

 In this section I will single out a special subset of HOML’s models, or cosmoi. I shall call 

these Kripke cosmoi because they contain components corresponding to the logic K—whose 

name derives from the work of Saul Kripke—and its extensions. 
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 Kripke cosmoi, or K cosmoi for short, each contain exactly one universe, which contains 

indefinitely many galaxies, each galaxy containing an arbitrary number (greater than zero) of 

worlds. To distinguish these special models from the rest, I will use a slightly modified syntax. 

Instead of using a ‘g’ to denote a galaxy, I shall use a ‘k’, for ‘Kripke’. Thus galaxy k
 
(no 

superscript necessary) corresponds to the logic K, k
ρ
 to the logic Kρ …, and k

ρστ
 to the logic 

Kρστ. Correspondingly, we shall write ‘Rk’ for the access relation that holds between the 

galaxies. (Since there is only one universe in each K cosmos, there is no need to superscript a 

numeral either to terms denoting it or the access relation defined on it.) Points will then be of the 

form <w
x
k

y
u>. Furthermore, we shall change the notation for the second and third-order modal 

operators, and accordingly drop the subscripts for the first-order ones. Instead of ◊2, we have 

<E>, and instead of □2, we have [E]. And instead of ◊3, we have <K>, and instead of □3, we have 

[K]. The reason for this change of notation is as follows: In each K cosmos the universe u 

accesses itself, so Ru is reflexive; and since there are no other universes it is trivially symmetric 

and transitive. Thus 
┌
<K> p

┐ 
has the effect of saying that p holds in at least one galaxy, and 

hence, in K or in at least one of its extensions; while 
┌
[K] p

┐ 
has the effect of saying that p holds 

in K and in all of its extensions. Also, in each K model, Rk is irreflexive, asymmetric, and 

intransitive; and for each galaxy, it accesses another just in case the logic corresponding to it is 

(properly) extended by the logic corresponding to the other. Since Kρ extends K, we have k Rk 

k
ρ
; since Kρστ extends Kρτ, we have k

ρτ
 Rk k

ρστ
; and so on. Thus 

┌
<E> p

┐
 has the effect of 

saying that p holds in at least one galaxy that (properly) “extends” a given galaxy, and 
┌
[E] p

┐
 

has the effect of saying that p holds in all galaxies that (properly) extend a given galaxy. So Rk 

mimics the relation ‘being (properly) extended by’ which holds between K and its extensions. 

Finally, as the reader may have guessed, the access relation that holds between the worlds of a 
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given galaxy corresponds to that of the logic which that galaxy represents. So, the relation Rw 

(with no superscript, since it is the relation that holds within the galaxy k) is never assumed to be 

reflexive, symmetric or transitive; the relation R
ρστ

 w is assumed to be reflexive, symmetric and 

transitive; and correspondingly for the access relations of the other galaxies. When logical 

consequence is restricted to K cosmoi, we shall write X ╞ p [K] for 
┌
q is a semantic K-

consequence of X
┐
 and X ├ p [K] for 

┌
q is a derivable K-consequence of X

┐
. 

 The reader may now be able to see why K cosmoi are special: they allow one to reason 

about the properties of and relations between the logic K and its extensions in a relatively simple 

and straightforward manner. I have no doubt that similar methods could be applied to model the 

properties and relations that apply to modal logics of other kinds. So, one potential benefit of 

HOML is that it gives us an easy way to investigate, at the level of an object language, the 

metalogical properties and relations that apply to modal logics by simulating the relation 

whereby one such logic (properly) extends another. 

 

6. Implications for the Philosophy of Language 

 I believe that my account has consequences for the philosophy of language; specifically, 

for a variety of counterfactual conditionals known as counterpossibles. Counterpossibles are 

counterfactuals that have impossible antecedents. As an example, let us take once more Kripke's 

thesis of the essentiality of origins. Let's suppose that Kripke is right, and that one essentially has 

the parents one actually has. Let us also suppose that the framework I have proposed is correct, 

and additionally that it is second-order possible that one has different parents from one's actual 

ones. One can then make good sense of the counterpossible conditional, “If the thesis of the 
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essentiality of origins were false, Quine could have had Carnap for a father.” On the standard 

semantics, this is true, but vacuously so. For granting the essentiality of origins the antecedent is 

impossible, and on the standard semantics all counterfactuals with impossible antecedents are 

true, including the conditionals “If the thesis of the essentiality of origins were false, Quine could 

not have had Carnap for a father,” and “If the thesis of the essentiality of origins were false, 

Quine would have been a fried egg.” On my approach, however, one could construct a semantics 

in which, if a sentence is not true at any world in the actual galaxy, one can look to worlds in 

other possible galaxies.  The first conditional can then come out as non-vacuously true, and the 

second and third as non-vacuously false. Moreover, one need not invoke “intrinsically 

impossible” worlds—worlds which are impossible full stop, in and of themselves—but only 

worlds which are impossible with respect to worlds in the actual galaxy. (One could, of course, 

modify my framework to include intrinsically impossible worlds, perhaps to accommodate 

counterpossibles whose antecedents contravene logical laws, but one would then have to make 

non-trivial changes to HOML.)   

 

7. Implications for Metaphysics 

 I believe that my account is relevant to three metaphysical issues: the metaphysics of 

modality, the philosophy of time, and laws of nature. 

7.1. The Metaphysics of Modality 

 “The world is the totality of facts, not of things” (Tractatus Logico-Philosophicus 1.11). 

So said Wittgenstein in the opening lines of the Tractatus. But is that true?  
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 If we “modalize” and “pluralize” Wittgenstein’s account, so that it identifies possible 

worlds with totalities of what would be facts if they were actualized, I think the answer must be 

“no” if my framework is to be accepted with the interpretation that I have given it. This is 

because evaluation points are ordered n-tuples rather than worlds. Consider two points (using 

ordered triples, as I did in HOML, for the sake of simplicity): <w
1
g

1
u

1
> and <w

1
g

2
u

1
>. Now, 

since w
1 

occurs in both these points, they will agree on the truth values of all their atomic 

sentences, and hence on the truth values of all their logical consequences, including all truth 

functional compounds which are built up ultimately from these atomic sentences. However, they 

might not agree on the truth values of their modal sentences, and hence on any of their logical 

consequences. Thus, on my view we cannot speak of the totality of what would be facts—of 

what would be the case—if a given possible world were actualized, for the truth values of the 

totality of its atomic sentences and their logical consequences underdetermines the truth values 

of modal sentences and their logical consequences, and hence underdetermines the truth values 

of the purported totality of sentences that would be true if that world were actualized. If we did 

identify a possible world with the totality of what would have been true if that world were 

actualized, then, we would have to conclude the truth values of modal sentences which hold 

concerning a world could not have differed from what they actually are, and that would 

undermine the interpretation that I have given of HOML.  

 If, however, we identify a possible world with the totality of what would have been true 

no matter which of the points that contain it had been actualized, there is no problem. In that 

case possible worlds cannot be thought of as totalities of everything that would have been true if 

they had been actualized, since there are no such totalities. But they can be thought of as being 
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totalities of certain things that would be true if they had been actualized—namely, certain atomic 

sentences and their logical consequences. Indeed, they are even maximal in a sense: For every 

atomic sentence, a world includes either that sentence or its negation. If we call atomic sentences 

and their negations literals, we could think of possible worlds as maximal sets of literals (and 

their logical consequences). They might not be quite as “big” as analytic-philosophical 

commonsense would have them be—since they aren’t maximal sets of sentences full stop—but 

they seem big enough to serve as possible worlds, or at least as useful replacements for those 

not-entirely-unambiguously-understood entities.  So my framework has some consequences for 

the metaphysics of modality, but I doubt that they are very momentous.  

 However, since two different points which contain the same possible world may disagree 

on modal sentences, but will have to agree on what exists (since they both contain the same 

possible world) we must hold that either truthmaker maximalism, or truthmaker 

necessetarianism, or what has been called ‘thingism’ is false: The totality of what is true is not 

fixed by the totality of what exists. (The status of the thesis that truth supervenes on being is not 

so clear. For the record, my own inclination is to reject necessetarianism and/or thingism.) This 

is a significant consequence, but I must leave the examination of what exactly its significance is 

for another occasion.  

 Those who believe in modality are divided into two camps. David Lewis labeled one the 

‘modal realist’ camp, and the other the ‘modal ersatzist’ camp (On the Plurality of Worlds, 

Chapter 3). Those who are not Lewisian modal realists may take possible worlds be various 

abstract entities: properties, or sets of properties, or maximal sets of propositions, or Plantingan 

maximal states of affairs, or perhaps something different still. Whichever of these views one 
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takes, I think adopting my framework simply gives one “more of the same”: One can take 

evaluation points to be properties, or sets of properties, or maximal sets of propositions, or 

Plantingan maximal states of affairs … and one can identify possible worlds (and galaxies, and 

universes…) with certain parts or subsets or other components of these. Something similar, I take 

it, goes for instrumentalism: If one can be an instrumentalist about ordinary possible worlds 

semantics, one can be an instrumentalist about HOML as well. If I'm right about all this, the 

main difference between my view and first-order views is that mine posits more structure in 

evaluation points than theirs does, in the form of accessibility relations between parts or subsets 

or other components of these entities. Thus I think the higher-order versions of each of the above 

views will have the same sorts of pros and cons as the first-order views of which they are 

extensions, and hence that adopting my framework should leave the debate over the metaphysics 

of modality much as it was before. 

 I think modal realism is an exception to that conclusion, because the notion of a higher-

order accessibility relation doesn't make much sense on that view, but then first-order 

accessibility relations don't make much sense on that view either. On the Lewisian picture, 

possible worlds are maximal spatio-temporally connected concrete entities; and since his is a 

reductive account of modality, there's not much, if any, content to the 'possible' in 'possible 

world': Their “possibility” amounts to their existence, and perhaps also to the fact that it is 

analytically true that nothing existent can contain the Russell set, married bachelors, round 

squares, and the like. A primitive notion of relative possibility could then make sense only if a 

primitive notion of relative existence made sense, which (I think) it does not. And if the notion of 

relative possibility were not primitive, on the Lewisian picture, such relations would have to 
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supervene on the non-modal properties and relations of possible worlds. It would then make no 

sense to suppose that such relations could be different from how they actually are. My 

framework, then, is incompatible with modal realism, if modal realism is taken to be a reductive 

account of modality. There is, however, no incompatibility between my framework and the 

existence of multiple maximal spatio-temporally connected concrete entities, only with the idea 

that modality is correctly analyzed in terms of them. 

7.2. The Philosophy of Time 

 There is no reason why a framework like mine must be limited to logical and 

metaphysical modality: One can modify HOML to get higher-order tense logic(s). “Possible 

worlds” become moments of time, “possible galaxies” become intervals of time, or even entire 

timelines, and can themselves be considered “second-order moments” of “second order time.” 

The second-order relation of relative possibility is re-interpreted as a second-order earlier than 

or a second-order later than relation. The idea here is that second-order moments represent 

different ways that first-order moments can be related by the first-order earlier than or later than 

relations, and that which of those first-order relations obtains could change over the course of 

second-order time. Second-order moments could also, of course, differ as to which first-order 

moments they contain, and hence which first-order moments are part of the first-order timeline 

could also change over the course of second-order time. 

 Just as, on first-order views, time can be depicted as a one-dimensional line, on this view 

time could be depicted as a multi-dimensional space. Since HOML’s evaluation points are 

ordered triples its temporal counterpart will represent time in a way that could be visualized as a 
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three-dimensional space. The first dimension represents the arrangement and contents of first-

order moments of time: How objects come to be, cease to be, alter, or remain the same. The 

second dimension represents the arrangement and contents of second-order moments of time: 

How intervals of time, which consist of first-order moments, come to be, cease to be, alter, or 

remain the same. Finally, the third dimension represents the arrangement and contents of third-

order moments of time: How “temporal planes” of time, which consist of intervals, come to be, 

cease to be, alter, or remain the same. If one is a B-theorist, one can take this talk of dimensions 

literally: If time is fundamentally similar to space, why could there not be multiple temporal 

dimensions, just as there are multiple spatial dimensions?  

 B-theorists can take two stances regarding the difference between time and space. First, 

they could say that there is no intrinsic difference; we simply construe one dimension of a 

manifold as temporal because, e.g., it is the dimension in which entropy increases in one 

direction. On this view, I cannot see why there couldn’t be additional dimensions in which 

entropy—in this case, a measure of the disorder of an entire interval of time, or of an entire 

“temporal plane”—increases in one direction. Second, they could say that space and time, 

though highly similar, are qualitatively distinct. On this view matters are less clear, but it would 

strike me as curious if there could be many dimensions of space, but not of time. I would regard 

arguments to that effect with as much suspicion as I would arguments to the effect that space 

must be Euclidean or no more than three dimensional. Even if time must be one-dimensional, the 

discovery of such things as non-Euclidean geometries and their physical application should 

caution us not to regard time’s mono-dimensionality as something that can be settled a priori.  
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 What, though, of A-theorists? On their view time is not like space, and tenses or tensed 

properties must be taken as primitive or irreducible. Here matters are still less clear, so I will 

simply say that if one is free to posit first-order tenses or tensed properties as primitive or 

irreducible, why shouldn’t one be free to posit higher-order tenses or tensed properties as 

primitive or irreducible? At this point I suspect that arguments would rest on a clash of 

intuitions, with no effective means of deciding between them. It would be better, I think, to 

simply explore higher-order tense logic in order to see what benefits, if any, we can derive from 

it; and then, if we find them to be sufficiently great,  we can accept it as a good working 

hypothesis. If it escapes attempts to prove it metaphysically incoherent, well and good. If not, we 

could still regard it as a useful fiction.  

 I will now outline the syntax and semantics of such a system, which I call ‘HOTL’, an 

acronym for ‘Higher-Order Tense Logic’. In 7.2.1., I give the syntax of HOTL; in 7.2.2., its 

semantics; in 7.2.3., its tableaux rules, and in 7.2.4., I construct some tableaux. Finally, in 7.2.5. 

an interesting application of HOTL is briefly sketched. 

7.2.1. Syntax of HOTL 

 The syntax is the same as in HOML, except for the modal operators. In their place HOTL 

has tense operators: 

If p is a wff of HOTL,  so are [P]1 p, [P]2 p, [P]3 p, <P>1 p, <P>2 p, <P>3 p, [F]1 p, [F]2 

p, [F]3 p, <F>1 p, <F>2 p, and <F>3 p.  

Here [P]n p means that it was always the case that p at order n; <P>n p, that it was at some time 

the case that p at order n; [F]n p, that it will always be the case that p at order n; and <F>n p, that 

it will at some time be the case that p at order n. 
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7.2.2 Semantics of HOTL 

1) A space of first-order points, i.e., of times, is called an interval; a space of 

second-order points, a span; and a space of any higher order, an eon. Since we are 

only dealing with three orders of time, we will use but a single eon, considered as 

a model structure.  

2) An eon is a 6-tuple <T, I, S, RT, RI, RS> where: 

 

 T is a non-empty set, its members are times, 

 I is a non-empty set of subsets of T, its members are intervals, 

 S is a non-empty set of subsets of I, its members are spans, 

 RT = {R
y
t: i

y
 in I} is a set of access relations, one for 

each interval, and defined on that interval, holding between times. 

 RI = {R
z
i: s

z
 in S} is a set of access relations, one for 

each span, and defined on that span, holding between intervals. 

 RS = {Rs} (no superscript necessary in this case) is the unit set of the 

access relation defined on the eon, holding between spans. 

 

 An evaluation point is a triple <t
x
i
y
s

z
>, with a time t

x
 in T, an interval i

y
 in 

I, and a span s
z
 in S and such that t

x
 is in i

y
 and i

y
 is in s

z
. 

 

3) Truth values are assigned to points in the same way as in HOML, except for the modal 

operators. The truth conditions for the tense operators are: 

1) v([P]1 p) @ <t
x
i
y
s

z
> = 1 iff, for all times t’ in i

y 
that access t

x
, 

v(p) @ <t’i
y
s

z
> = 1. 
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2) v([P]2 p) @ <t
x
i
y
s

z
> = 1 iff, for all times t’ in all intervals i’ in s

z 

that access i
y
, v(p) @ <t’i’s

z
> = 1. 

3) v([P]3 p) @ <t
x
i
y
s

z
> = 1 iff, for all times t’ in all intervals i’ in all 

spans s’ that access s
z
, v(p) @ <t’i’s’> = 1. 

4) v(<P>1 p) @ <t
x
i
y
s

z
> = 1 iff, for some time t’ in i

y 
that accesses 

t
x
, v(p) @ <t’i

y
s

z
> = 1. 

5) v(<P>2 p) @ <t
x
i
y
s

z
> = 1 iff, for some time t’ in some interval i’ 

in s
z 
that accesses i

y
, v(p) @ <t’i’s

z
> = 1. 

6) v(<P>3 p) @ <t
x
i
y
s

z
> = 1 iff, for some time t’ in some interval i’ 

in some span s’ that accesses s
z
, v(p) @ <t’i’s’> = 1. 

7) v([F]1 p) @ <t
x
i
y
s

z
> = 1 iff, for all times t’ in i

y 
that t

x
 accesses, 

v(p) @ <t’i
y
s

z
> = 1. 

8) v([F]2 p) @ <t
x
i
y
s

z
> = 1 iff, for all times t’ in all intervals i’ in s

z 

that i
y
 accesses, v(p) @ <t’i’s

z
> = 1. 

9) v([F]3 p) @ <t
x
i
y
s

z
> = 1 iff, for all times t’ in all intervals i’ in all 

spans s’ that s
z
 accesses, v(p) @ <t’i’s’> = 1. 

10) v(<F>1 p) @ <t
x
i
y
s

z
> = 1 iff, for some time t’ in i

y 
that t

x
 

accesses, v(p) @ <t’i
y
s

z
> = 1. 

11) v(<F>2 p) @ <t
x
i
y
s

z
> = 1 iff, for some time t’ in some interval 

i’ in s
z 
that i

y
 accesses, v(p) @ <t’i’s

z
> = 1. 

12) v(<F>3 p) @ <t
x
i
y
s

z
> = 1 iff, for some time t’ in some interval 

i’ in some span s’ that s
z
 accesses, v(p) @ <t’i’s’> = 1. 

4) The definitions of satisfaction, validity, and restricted validity given for HOML 

can be modified to obtain ones for HOTL in an obvious way. 
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7.2.3. Tableaux Rules for HOTL 

 The tableaux rules for the truth functional connectives are the same as those for HOML, 

except of course that the points are now triples of the form <t
x
i
y
s

z
>. The tableaux rules for the 

tense operators are: 

                      <P>1 p, <t
x
i
y
s

z
>                                                           [P]1 p <t

x
i
y
s

z
> 

                            |                                                                                     | 

                     t
i 
R

y
t t

x
                                                                           t

i  
R

y
t t

x
 

                            |                                                                                     | 

                           p, <t
i
i
y
s

z
>                                                                   p, <t

i
i
y
s

z
> 

   

         (where t
i
 is new to the branch),                            (for all times that are members of i

y
) 

 

                      <P>2 p, <t
x
i
y
s

z
>                                                           [P]2  p, <t

x
i
y
s

z
> 

                            |                                                                                     | 

                      i
j  

R
z
i i

y
                                                                           i

j  
R

z
i i

y
 

                            |                                                                                     | 

                           p, <t
i
i
j
s

z
>                                                                   p, <t

i
i
j
s

z
> 

   

 (where i
j
 is new to the branch and t

i
 is a member of it),  (for all times of all intervals which 

access i
y
 that are members of s

z
) 

                      <P>3  p, <t
x
i
y
s

z
>                                                           [P]3 p, <t

x
i
y
s

z
> 

                            |                                                                                     | 

                      s
k  

Rs s
z
                                                                         s

k  
Rs s

z
 

                            |                                                                                     | 

                           p, <t
i
i
j
s

k
>                                                                   p, <t

i
i
j
s

k
> 

(where s
k
 is new to the branch, i

j 
is a member of s

k
, and t

i
 is a member of i

j
),  (for all times of all 

intervals of all spans which access s
z
) 

                      <F>1 p, <t
x
i
y
s

z
>                                                           [F]1 p <t

x
i
y
s

z
> 

                            |                                                                                     | 

                     t
x  

R
y
t t

i
                                                                            t

x  
R

y
t t

i
 

                            |                                                                                     | 

                           p, <t
i
i
y
s

z
>                                                                   p, <t

i
i
y
s

z
> 

   

         (where t
i
 is new to the branch),                            (for all times that are members of i

y
) 
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                      <F>2 p, <t
x
i
y
s

z
>                                                           [F]2  p, <t

x
i
y
s

z
> 

                            |                                                                                     | 

                      i
y  

R
z
i i

j
                                                                           i

y  
R

z
i i

j
 

                            |                                                                                     | 

                           p, <t
i
i
j
s

z
>                                                                   p, <t

i
i
j
s

z
> 

   

 (where i
j
 is new to the branch and t

i
 is a member of it),  (for all times of all intervals which i

y
 

accesses that are members of s
z
) 

 

                      <F>3  p, <t
x
i
y
s

z
>                                                           [F]3 p, <t

x
i
y
s

z
> 

                            |                                                                                     | 

                      s
z  

Rs s
k
                                                                           s

z  
Rs s

k
 

                            |                                                                                     | 

                           p, <t
i
i
j
s

k
>                                                                   p, <t

i
i
j
s

k
> 

 

(where s
k
 is new to the branch, i

j 
is a member of s

k
, and t

i
 is a member of i

j
),  (for all times of all 

intervals of all spans which s
z
 accesses) 

 In addition, where n can be either1, 2 or 3, we have: 

                                      ¬ <P>n  p, <t
x
i
y
s

z
>                          ¬ [P]n  p <t

x
i
y
s

z
> 

                                               |                                                       | 

                                       [P]n ¬ p, <t
x
i
y
s

z
>                          <P>n ¬ p, <t

x
i
y
s

z
> 

 

 

   ¬ <F>n  p, <t
x
i
y
s

z
>                          ¬ [F]n  p <t

x
i
y
s

z
> 

                                               |                                                       | 

                                       [F]n ¬ p, <t
x
i
y
s

z
>                          <F>n ¬ p, <t

x
i
y
s

z
> 

 

 

 

7.2.4. Some Tense Tableaux 

1) First, I will show that [F]1 ¬ p   [F]2 ¬ p: 
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[F]1 ¬ p, <t
1
i
1
s

1
> 

¬  [F]2 ¬ p, <t
1
i
1
s

1
> 

| 

<F>2 ¬ ¬ p, <t
1
i
1
s

1
> 

| 

i
1 
R

1
i i

2 

| 

¬ ¬ p, <t
2
i
2
s

1
> 

| 

p <t
2
i
2
s

1
> 

Here we’ve applied all the rules we can, and the tableau has not closed, so it’s 

open. Thus, even if something will never happen at the first order, it can still be 

true that it will happen at the second order. 

3) Next, I will show that p ├ <F>1 <P>1 p: 

 p, <t
1
i
1
s

1
> 

¬ <F>1 <P>1 p, <t
1
i
1
s

1
> 

| 

[F]1 ¬ <P>1 p, <t
1
i
1
s

1
> 

| 

t
1
 R

1
t t

2
 

| 

¬ <P>1 p, <t
2
i
1
s

1
> 

| 

[P]1 ¬ p, <t
2
i
1
s

1
> 

| 

                                                ¬ p, <t
1
i
1
s

1
> (From the previous node and t

1
 R

1
t t

2
) 

x 

 

So if something is the case at the first order, it will at some time be the case at the 

first order that it was at some time the case at the first order. 

  

 

3) Finally, I will show that p  <F>2<P>1 p: 
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p, <t
1
i
1
s

1
> 
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Here we’ve applied all the rules we can, and the tableau has not closed, so it’s 

open. So if something is the case at the first order, it does not follow that it will at 

some time be the case at the second order that it was at some time the case at the 

first order. In other words, what is the case may, at some second-order-future 

time, never have been the case (at the first order). 

 

7.2.5. Changes in Time 

 None of this is to say that I think this account is true of actual time. If it isn’t, it can 

nevertheless be applied to the semantics of fiction. One can make a comparison with Graham 

Priest's story “Sylvan's Box” (Priest 1997), in which Priest argued that a contradiction can be 

true according to a story without everything being true according to it. Similarly, in many 

science fiction stories there are certain time travel scenarios in which something happens which 

seems to “change the past,” but typically it is not said that there is any one time at which 

something both happens and fails to happen. HOTL could be used to reason about what is true 

according to such scenarios. If the time-traveler was “originally” not at some event, one can 

nevertheless suppose that there is a second-order-later interval at which they are, and that their 

presence results in different first-order moments being part of the first-order timeline of the 
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second interval than those that were (at the second order) part of the first-order timeline of the 

first interval. This sort of change in first-order time over higher-order time is importantly 

different from a dialetheic view: HOTL does not require that there be any point of evaluation at 

which a contradiction is true—indeed, it forbids it. HOTL thus allows one to represent such a 

“change in time” without representing that there are any true contradictions. 

 So, if there are higher-order tenses, HOTL can be used to model certain structural 

properties of time; and if not, it can still be used to model the semantics of fiction. In any case I 

think our discussion shows HOTL to be interesting in its own right, and thus to be worth 

exploring.   

7.3 Laws of Nature 

 There are some things about the universe that cry out for explanation. One is the fact that 

the universe is orderly. In a great many instances, similar causes produce similar effects, and the 

past can serve as a guide to the future.  To make this point clearer and more precise, I think it 

will be instructive to consider the views of causation put forward by the philosophers Brand 

Blanshard
1
 and A.C. Ewing

2
, who gave similar arguments for the claim that causal relations are 

“logically necessary”. Given that their views of logic are somewhat unorthodox by the standards 

of analytic philosophers, I think it would be more accurate and less confusing to talk of 

metaphysical necessity in causation, and I will do so in what follows. 

 A “rational reconstruction” of their arguments goes something like this: If causal 

connections are not metaphysically necessary, the fact that similar effects follow upon similar 

causes, or that there are certain, seemingly exceptionless regularities in nature—which  can be 

                                                           
1
 The Nature of Thought (second edition), vol. 2 , Ch. XXXII, “Concrete Necessity and Internal Relations”; Reason 

and Analysis, Ch. XI, “Necessity in Causation”. 
2
 Non-Linguistic Philosophy: Ch. VI, “Causation and Induction”. 
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expressed in laws of nature—is  quite remarkable. If “anything can cause anything”, as Humeans 

sometimes say, we have a tremendous coincidence, “an outrageous run of luck”, as Blanshard 

puts it
3
, which is comparable to rolling a die and getting a 4 a trillion times in a row. But if 

causal connections are metaphysically necessary, we have a good explanation for the fact that 

similar effects follow upon similar causes, or that there are exceptionless regularities in nature: 

they obtain because they must. If events of type B necessarily follow upon events of type A, any 

token A event will be followed by a token B event. Granting that, we may be able to justify 

instances of inductive inference that fit the following schema: Events of type A have always 

been followed by events of type B, hence, events of type A will always be followed by events of 

type B.  

 The argument for this schema is this: In certain cases we take ourselves to have 

established that every observed event of type A has been followed by an observed event of type 

B. We also note that, since type A events are observed very frequently, it is implausible, though 

possible, that their association with type B events is a matter of chance. There appear to be two 

alternatives: Either the association is an a coincidence, or there is a necessary connection 

between them, albeit one that we may not be able to discern.  Next we consider the principle of 

Inference to the Best Explanation (IBE): This principle says, very roughly, that if we have 

multiple hypotheses vying to account for some phenomenon, it is most reasonable to accept that 

the hypothesis which best explains it is the true one. If having any explanation is rationally 

preferable to having none—assuming we have no evidence which rules out all the candidate 

explanations, or which renders them improbable—IBE tells us that it is more reasonable to 

                                                           
3
 The Nature of Thought, vol. 2, p. 505 . 
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accept an explanatory hypothesis over a non-explanatory one. Since coincidence is no 

explanation, in the present case IBE counsels us to accept the hypothesis that there is a 

metaphysically necessary connection between type A events and type B events—as long as there 

is no other alternative. Because of this necessary connection, we can conclude that type A events 

will always be followed by type B events, just as they always have been.  

 Note that we have justified the schema neither deductively nor inductively: We have not 

deduced, and neither have we seen through “rational insight”, that it is necessary that type A 

events will always be followed by type B events based on knowledge of their natures, nor have 

we concluded that type A events will always be followed by type B events just because they 

have always been so followed in the past. We have relied instead on IBE. Neither have we 

invoked the principle of sufficient reason or the idea that every event must have a cause; we have 

only said that it is more reasonable to believe in a necessary connection than an incredibly 

extensive coincidence. Thus the objections that can be raised against such principles cannot be 

raised against the present argument. 

 How, though, could there be a necessary connection of this sort? As Hume argued at 

length in the Treatise and first Enquiry, such connections cannot be logically necessary, and the 

most minute acquaintance with causes and their effects gives us no a priori insight as to why 

events of the one type should be followed by events of the other. However, if one accepts that 

there are different orders of metaphysical modality there is one explanation that naturally 

presents itself: Though these connections are necessary, they are contingently necessary, and that 

is why we have no a priori insight into them. Laws of nature may be conceived of as accidental 

regularities writ large: Just as it may be that some regularities hold throughout the universe as a 

matter of contingent fact, it may be that some regularities hold throughout the actual galaxy as a 
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matter of contingent fact. This would be contingent, not because it is contingent what goes on 

within that galaxy—what occurs within any world is absolutely essential to the identity of that 

world, and which worlds are members of a given galaxy is absolutely essential to the identity of 

that galaxy—but rather because (a) it is contingent whether that galaxy is the actual galaxy, and 

(b) that regularity will not in general hold in other galaxies, since they may contain worlds not 

contained in the actual galaxy, and given that the regularity is not logically necessary it will fail 

to hold in some worlds.  

 Why assume that there are such regularities, which hold throughout vast swaths of logical 

space? The reason is simple: Since, for any worlds you please, there is some galaxy containing 

exactly those worlds, it follows that for any potential regularities you please, there will be some 

galaxy which contains only worlds where those regularities hold. 

 Some may question how much of an improvement this is over a more orthodox regularity 

view, according to which there is only one order of modality, and natural laws are merely 

accidental regularities. My response would be that one important difference between that view 

and the one I’ve presented is that even though laws of nature are contingently necessary on my 

view, they are still contingently necessary. That means that natural laws hold throughout every 

world in the actual galaxy, or at least throughout every world in the actual galaxy which this 

world accesses. This in turn means that what these laws prescribe is counterfactually invariant 

(at least at the first order of modality): If it is a law of nature that type A events will always be 

followed by type B events, then type A events would always have been followed by type B 

events no matter what. Granted, it is higher-order contingent that type A events would always 

have been followed by type B events no matter what: If the highest order at which that is 



34 

necessary is the first order, then at every higher order it is a contingent fact that it is first-order 

necessary that type A events are always followed by type B events. Thus there is no explanation 

as to why that is first-order necessary. But as I see things, a lack of explanation, unlike necessity, 

is not “hereditary downwards”. We are indeed supposing that there is no explanation as to why it 

is first-order necessary that A events are always followed by type B events, but even so, there is 

a perfectly good explanation as to why type A events are always followed by type B events: It is 

first-order-necessarily so.  

 

8. The Philosophy of Religion 

 In this section we shall turn to the philosophy of religion. If there are higher-order 

modalities, there are higher-order contingencies; and if there is also an absolutely necessarily 

existent, omnipotent God, He ought to have control over them. A restricted version of Descartes' 

view that necessary truths were subject to God's will would be true. God would not, on this view, 

have the power to make contradictions true, or to make two plus two equal to five; but He could 

decide, for example, to make the thesis of the essentiality of origins true or false by deciding 

which galaxy to actualize. 

 If God did have that kind of control over the modal landscape, it would have implications 

for the problem of evil; in particular, for the soteriological problem of evil. This problem 

involves the issue of how, on the Christian view and others like it, the existence of a just and 

loving God is compatible with some people being condemned to hell. This is especially 

problematic for Molinist views, according to which God has middle knowledge—that God can 
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know, independently of which possible world is actual, what agents would freely choose to do in 

certain circumstances, even though those agents possess libertarian free will. God can thus 

choose to actualize those circumstances and in a sense exercise a non-causal control over what 

non-deterministic agents freely choose to do.  The question, then, is why God didn’t choose to 

actualize circumstances in which agents freely act in such a way that no one gets condemned to 

hell.  

 One way of responding to this is to say that human nature is such that that is not possible, 

that some always freely choose to reject God. God simply can’t actualize a world in which this 

isn’t so. However, if my framework constitutes the correct view of modality, God ought to have 

control over what “human nature” is like: Even if some always freely choose to reject God in 

every world in the actual galaxy, God could have chosen to actualize another galaxy in which 

this isn’t the case. Why, then, didn’t God do so? One could respond that some freely choose to 

reject God not merely in every world in the actual galaxy, but in every possible world there is. 

But that would make the claim that some freely reject God co-extensive with a logical truth; and 

that, in my view, is an implausibly strong status for such a claim to have: If a claim doesn’t hold 

as a matter of logic, there ought to be some logically possible world in which it is false. If my 

framework is correct, then, this Molinist defense against the soteriological problem of evil 

simply doesn’t work.  
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9. Conclusion 

 In this paper I have examined the possibility and prospects of two novel logical 

frameworks, which I have called higher-order modal logic and higher-order tense logic. I have 

outlined their motivation, as well as their syntax and semantics. I have shown how to establish 

derivability claims about them via semantic tableaux, and have constructed a few of them 

myself. Finally, I have explored some of their implications for modal metalogic, the philosophy 

of language, metaphysics, and the philosophy of religion. It is my hope that the reader will agree 

with me that they are frameworks which are both intriguing in their own right and potentially 

fruitful, having interesting implications for our understanding of modality and a variety of other 

issues of philosophical significance.  
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